# **Mineral Insulated Cables**



- O Thermocouple Mineral Insulated Cables
- O RTD Extension Mineral Insulated Cables
- O Heater Mineral Insulated Cables
- O Mineral Insulated Power Cable



### **ABOUT THE COMPANY**



Tempsens Instruments (I) Pvt. Ltd. is a part of Pyrotech Group which was established by four technocrats in 1976 at Udaipur, with their first product as Thermocouples and RTDs.

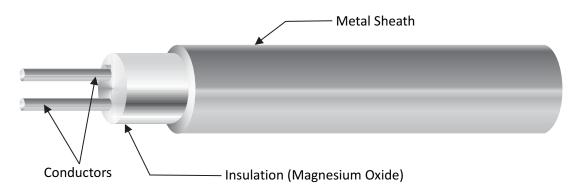
Today Tempsens is one of the largest manufacturers of Temperature Sensors in India.

We are ISO 9001:2008 certified company with NABL accredited Lab. Tempsens Instruments (I) Pvt. Ltd. U # II was started in 2009 to produce quality cables with high standard of manufacturing process conforming to national & international specifications.

We manufacturer wide range of cables for Temperature sensors and Instrumentation in various insulations as PTFE, Kapton, Silicon, Fiber Glass, Ceramic Fiber, Refrasil/Nextel, PVC etc. in variety of configurations. These cables are available in temperature range -60°C to 1200°C.

All our products are manufactured under strict ISO - 9001 quality control system. We also provide Calibration Certificates with all cables. We stock almost all types of cables which enable us for fast delivery of goods. Our engineers are capable of custom design solution for any application as per customer need. We are dedicated to provide the highest quality products that meet our customer's specifications for various applications. We continuously focus on improving our manufacturing processes and competitiveness in the industry. We introduce our latest addition in the cable linethe mineral insulated, metal sheathed cable products. The applications of MI Cable in blast furnace, atomic research, nuclear reactors, Kilns, etc. Our product catalogue will help you in understanding and selecting MI cables for your application requirements. We provide our customers from standard as well as custom made products according to the needs of the customer, our lines are flexible and ready to meet the demand.

We manufacture cables in four distinct product lines:


- → Thermocouple cables for measuring temperature.
- → RTD extension cables for use with resistance temperature devices.
- → Micro Heater cables for unique industrial heating applications.
- → Mineral Insulated Power Cable
- → Any Special Cable which requires high temperature and rugged insulation.

### **BASICS OF MINERAL INSULATED CABLES**

#### **GENERAL INFORMATION**

One or more wire like conductors (cores) are embedded in a high insulation quality MgO and pressed into a metal tube (sheath) made of oxidation and corrosion resistant material. The entire combination is then processed using suitable forming steps to obtain the final dimensions.

In other words, Mineral Insulated Cable comprises a metal sheath in which the conductors are embedded in highly compressed magnesium oxide insulation.



Mineral insulated cables are designed for high-temperature applications and used wherever there are strict requirements with regard to mechanical, chemical and electrical stability.

On account of their good flexibility, the use of mineral insulated cables are preferred in areas where mounting is difficult and where a high degree of flexibility is required (for example, laboratories or pilot manufacturing plants). The minimum bending radius is 2 times the outer diameter of the mineral insulated cable.

Innovations in technology and manufacturing have made it possible for these cables to be used frequently as a material in the manufacture of standardized Thermocouples and RTDs, particularly in industrial measuring and control technology and in automotive sensor technology.

#### **Mineral Insulated Cables**

- 1) Mineral Insulated Thermocouple Cable.
- 2) Mineral Insulated RTD Cable.
- 3) Mineral Insulated Heater Cable.
- 4) Mineral Insulated Power Cable/Mineral Insulated Copper Cable
- 5) Coaxial/Triaxial Cable
- 6) Self Powered Neutron Detectors (SPNDs)

Thermocouple cables are manufactured to meet the requirements specified in ASTM E585/E585M & ASTM E 839 & IEC1515, Internationally recognized standards which specify the base metal thermocouple types.

Emf outputs comply with ASTM E230/E230M & IEC 584-2/ANSI MC 96.1

RTD extension cables adhere to ASTM E 2021 standards which ensure best performance of finished IPRT (RTD) sensors which are required to comply with ASTM E1137/E1137M.



### **FEATURES**

**Long Life :** The construction of the cable guarantees a long conductor life because the sheath and the insulating material protect the conductors (wire) against environmental conditions such as corrosion and scaling. This ensures accurate calibration throughout the life of the cable.

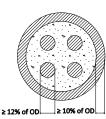
**Long Lengths :** Our unique manufacturing process results in lengths previously unheard of for mineral insulated cables.

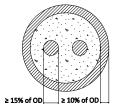
**Rapid Response :** The small mass and high thermal conductivity promotes rapid heat transfer from the heat source to measuring junction.

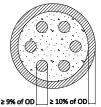
**Mechanical Strength :** The Compact construction with densely packed MgO and the robust metal sheath ensure the position of the conductors in the compound and thus the function of the cable, even when exposed to mechanical stresses such as bending, twisting or flattening.

**Corrosion and Scaling Resistance :** The vast array of materials included in our standard inventory and the possibility of manufacturing to specification has put us in a position to supply suitable sheath materials, even for unfavorable environmental conditions in a corrosive atmosphere and at high temperatures.

**Radiation Resistance :** The correct choice of components ensures radiation resistance making possible the use of these cables in primary circuits as well as in the incore area, i.e. inside the actual reactor core.


**Moisture/Pressure :** The Homogeneous metal sheaths are impervious to most liquids and gases and will withstand high external pressures. Unless otherwise specified our sheaths are seamless.


**Safety :** Since the materials used are MgO and metals, the cables are fire-proof and can thus be exposed to considerably higher temperatures than cables with synthetic sheaths.




### MINERAL INSULATED THERMOCOUPLE CABLE

Mineral Insulated Thermocouple cables have inner conductors of Thermocouple base material as per standard ASTM E 585/585M and ASTM E 839.









| Number of Pair | Sheath<br>Diameter<br>(mm) | Nominal<br>Wall<br>Thickness<br>(mm) | Element<br>Diameter<br>(mm) | Insulation<br>Thickness<br>(mm) | Insulation<br>Resistance<br>(ΜΏ) | Sheath<br>Material                                             | Conductor<br>Type | Insulation              | Calibration<br>Accuracy |
|----------------|----------------------------|--------------------------------------|-----------------------------|---------------------------------|----------------------------------|----------------------------------------------------------------|-------------------|-------------------------|-------------------------|
| Simplex        | 1.50                       | ≥ 0.15                               | ≥ 0.23                      | ≥ 0.11                          |                                  |                                                                |                   |                         |                         |
|                | 2.00                       | ≥ 0.20                               | ≥ 0.30                      | ≥ 0.14                          |                                  |                                                                |                   |                         |                         |
|                | 2.50                       | ≥ 0.25                               | ≥ 0.38                      | ≥ 0.18                          |                                  | SS316L                                                         |                   | MgO                     | Class 1 /               |
|                | 3.00                       | ≥ 0.30                               | ≥ 0.45                      | ≥ 0.21                          |                                  | SS316L<br>SS321                                                | K Type            | (Standard               | Class 2                 |
|                | 4.50                       | ≥ 0.45                               | ≥ 0.68                      | ≥ 0.32                          |                                  | SS310                                                          | J Type            | Purity ≥<br>97%)        | Accuracy<br>as per IEC  |
|                | 6.00                       | ≥ 0.60                               | ≥ 0.90                      | ≥ 0.42                          | $\geqslant$ 1000 M $\Omega$      | SS446<br>SS304                                                 | E Type<br>N Type  |                         | 584-2 /                 |
|                | 6.40                       | ≥ 0.64                               | ≥ 0.96                      | ≥ 0.45                          |                                  | Inconel 600                                                    | R Type            | MgO                     | ANSI MC<br>96.1 /       |
|                | 8.00                       | ≥ 0.80                               | ≥ 1.20                      | ≥ 0.56                          |                                  | Inconel 601<br>and others                                      | S Type            | (High Purity            | ASTM E                  |
|                | 9.50                       | ≥ 0.95                               | ≥ 1.43                      | ≥ 0.67                          |                                  |                                                                |                   | ≥99.4%)                 | 230                     |
|                | 10.00                      | ≥ 1.00                               | ≥ 1.50                      | ≥ 0.70                          |                                  |                                                                |                   |                         |                         |
|                | 12.70                      | ≥ 1.27                               | ≥ 1.91                      | ≥ 0.89                          |                                  |                                                                |                   |                         |                         |
| Duplex         | 1.50                       | ≥ 0.15                               | ≥ 0.18                      | ≥ 0.08                          |                                  |                                                                |                   |                         |                         |
|                | 2.00                       | ≥ 0.20                               | ≥ 0.24                      | ≥ 0.11                          |                                  |                                                                |                   |                         |                         |
|                | 2.50                       | ≥ 0.25                               | ≥ 0.30                      | ≥ 0.14                          |                                  | SS316L                                                         |                   | MgO                     | Class 1 /               |
|                | 3.00                       | ≥ 0.30                               | ≥ 0.36                      | ≥ 0.17                          |                                  | SS310L<br>SS321                                                |                   | (Standard<br>Purity     | Class 2                 |
|                | 4.50                       | ≥ 0.45                               | ≥ 0.54                      | ≥ 0.25                          |                                  | SS310                                                          |                   | 97%)                    | Accuracy<br>as per IEC  |
|                | 6.00                       | ≥ 0.60                               | ≥ 0.72                      | ≥ 0.33                          | ≥ 1000 MΏ                        | SS446<br>SS304                                                 |                   | ,                       | 584-2 /                 |
|                | 6.40                       | ≥ 0.64                               | ≥ 0.77                      | ≥ 0.35                          |                                  | Inconel 600                                                    |                   | MgO                     | ANSI MC<br>96.1 /       |
|                | 8.00                       | ≥ 0.80                               | ≥ 0.96                      | ≥ 0.44                          |                                  | Inconel 601<br>and others                                      | S Type            | (High Purity            | ASTM E                  |
|                | 9.50                       | ≥ 0.95                               | ≥ 1.14                      | ≥ 0.52                          |                                  |                                                                |                   | ≥99.4%)                 | 230                     |
|                | 10.00                      | ≥ 1.00                               | ≥ 1.20                      | ≥ 0.55                          |                                  |                                                                |                   |                         |                         |
|                | 12.70                      | ≥ 1.27                               | ≥ 1.52                      | ≥ 0.70                          |                                  |                                                                |                   |                         |                         |
|                | 3.00                       | ≥ 0.30                               | ≥ 0.27                      | ≥ 0.12                          |                                  |                                                                |                   | MgO                     |                         |
|                | 4.50                       | ≥ 0.45                               | ≥ 0.41                      | ≥ 0.18                          |                                  | SS316L                                                         |                   | (Standard               | Class 1 /<br>Class 2    |
|                | 6.00                       | ≥ 0.60                               | ≥ 0.54                      | ≥ 0.24                          |                                  | SS321<br>SS310<br>SS446<br>SS304<br>Inconel 600<br>Inconel 601 | K Type<br>J Type  | Purity ≥                | Accuracy                |
| Triplex        | 6.40                       | ≥ 0.64                               | ≥ 0.58                      | ≥ 0.26                          | ≥ 1000 MΩ                        |                                                                | E Type            | 97%)                    | as per IEC<br>584-2 /   |
| Thplex         | 8.00                       | ≥ 0.80                               | ≥ 0.72                      | ≥ 0.32                          | > 1000 IVI22                     |                                                                | N Type            |                         | ANSI MC                 |
|                | 9.50                       | ≥ 0.95                               | ≥ 0.86                      | ≥ 0.38                          |                                  |                                                                | R Type<br>S Type  | MgO                     | 96.1 /                  |
|                | 10.00                      | ≥ 1.00                               | ≥ 0.90                      | ≥ 0.40                          |                                  | and others                                                     | 21-2              | (High Purity<br>≥99.4%) | ASTM E<br>230           |
|                | 12.70                      | ≥ 1.27                               | ≥ 1.14                      | ≥ 0.51                          |                                  |                                                                |                   |                         |                         |

### **Ordering Example**

**60K600 :** 6.0 mm OD, K Type, Simplex, Inconel 600 Sheath with high purity of MgO Insulation and accuracy class 1 as per specification IEC 584

64NN316: 6.4 mm OD, N Type, Duplex, SS316L Sheath with high purity of MgO Insulation and accuracy class 1 as per specification IEC 584



### MINERAL INSULATED THERMOCOUPLE CABLE

| Туре | Temperature Range | Tolerance for Class 1 Accuracy | Tolerance for Class 2 Accuracy |
|------|-------------------|--------------------------------|--------------------------------|
| K/N  | -40°C to +1100°C  | +/- 1.5°C or +/-0.004(t)       | +/- 2.5°C or +/-0.0075(t)      |
| J    | -40°C to +750°C   | +/- 1.5°C or +/-0.004(t)       | +/- 2.5°C or +/-0.0075(t)      |
| т    | -40°C to +350°C   | +/- 0.5°C or +/-0.004(t)       | +/- 1.0°C or +/-0.0075(t)      |
| E    | -40°C to +800°C   | +/- 1.5°C or +/-0.004(t)       | +/- 2.5°C or +/-0.0075(t)      |
| R/S  | 0°C to +1600°C    | +/-1°C or +/-[1+0.003(t-1100)] | +/- 1.5°C or +/-0.0025(t)      |

### Standard Deviation of Mineral Insulated Thermocouple Cable as per IEC 584-2

#### Mineral Insulated Thermocouple Cables with Precious Thermocouple:

Precious metal thermocouples are exceptionally suitable for high-temperature applications under oxidizing conditions. They are used in chemical plants when absolute resistance to all kinds of acids is required.

|                       | Resistance of Precious Metal Mineral Insulated Thermocouples in Different Atmosphere |                              |        |          |             |             |             |             |  |
|-----------------------|--------------------------------------------------------------------------------------|------------------------------|--------|----------|-------------|-------------|-------------|-------------|--|
| Sheath<br>Material    | Thermocouple                                                                         | Max.Operating<br>Temperature | Oxygen | Nitrogen | Hydrogen    | Carbon      | Chlorine    | Sulphur     |  |
|                       | S Type                                                                               | 1100°C                       | Good   | Good     | Good        | Good        | Good        | Conditional |  |
| Inconel 600<br>2.4816 | R Type                                                                               | 1100°C                       | Good   | Good     | Good        | Good        | Good        | Conditional |  |
|                       | В Туре                                                                               | 1100°C                       | Good   | Good     | Good        | Good        | Good        | Conditional |  |
|                       | S Type                                                                               | 1300°C                       | Good   | Good     | Conditional | Conditional | Conditional | Conditional |  |
| pt10%Rh               | R Type                                                                               | 1300°C                       | Good   | Good     | Conditional | Conditional | Conditional | Conditional |  |
|                       | В Туре                                                                               | 1300°C                       | Good   | Good     | Conditional | Conditional | Conditional | Conditional |  |

### **MINERAL INSULATED COMPENSATING CABLE**

Mineral Insulated Compensating Cables have inner conductors of R/S Type (Cu-CuNi) and B Type (Cu-Cu), Compensating conductor with copper sheath.

| Conductor                                  | No. of<br>Pair | Sheath Material | Operating Temperature | Testing                                     |
|--------------------------------------------|----------------|-----------------|-----------------------|---------------------------------------------|
| R/S Type<br>Compensating Wire<br>(Cu-CuNi) | 1              | Copper Sheeth   | 200°C                 | (0.645 +/- 0.057) mV<br>as per ANSI MC 96.1 |
| R/S Type<br>Compensating Wire<br>(Cu-CuNi) | 2              | Copper Sheath   | 200°C                 | (0.645 +/- 0.057) mV<br>as per ANSI MC 96.1 |

### **Ordering Example**

**60 R SC :** 6.0 mm OD, R Type compensating Conductor, Simplex, and Copper Sheath **60 SS SC :** 6.0 mm OD, S Type compensating Conductor, Duplex, and Copper Sheath

### **MINERAL INSULATED RTD CABLE**

Mineral insulated cables for RTDs have inner conductors of copper, copper-nickel alloys, nickel, nickelchromium or nickel-plated copper.

| Sheath<br>Diameter<br>(mm) | Number of<br>Core | Nominal Wall<br>Thickness<br>(mm)                                          | Element<br>Diameter<br>(mm) | Insulation<br>Resistance<br>(ΜΩ) | Sheath<br>Material        | Conductor<br>Type      | Insulation                |
|----------------------------|-------------------|----------------------------------------------------------------------------|-----------------------------|----------------------------------|---------------------------|------------------------|---------------------------|
| 2.00                       |                   | ≥ 0.20                                                                     | ≥ 0.30                      |                                  |                           |                        |                           |
| 2.50                       | ≥ 0.25 ≥ 0.38     |                                                                            |                             |                                  |                           |                        |                           |
| 3.00                       |                   | ≥ 0.30                                                                     | ≥ 0.45                      |                                  |                           |                        | MgO                       |
| 4.50                       | 2 Core            | ≥ 0.45                                                                     | ≥ 0.68                      |                                  | SS316L<br>SS321           | Copper<br>Nickel       | (Standard<br>Purity ≥97%) |
| 6.00                       | &                 | ≥ 0.60                                                                     | ≥ 0.90                      | ≥ 100 MΏ                         | SS304                     | Nickel-Copper          |                           |
| 6.40                       | 3 Core            | ≥ 0.64                                                                     | ≥ 0.96                      |                                  | Inconel 600<br>and others | Alloy<br>and others    | MgO<br>(High Purity ≥     |
| 8.00                       |                   | ≥ 0.80                                                                     | ≥ 1.20                      |                                  |                           |                        | 99.4%)                    |
| 9.50                       |                   | ≥ 0.95                                                                     | ≥ 1.43                      |                                  |                           |                        |                           |
| 10.00                      |                   | ≥ 1.00                                                                     | ≥ 1.50                      |                                  |                           |                        |                           |
| 2.00                       |                   | ≥ 0.20                                                                     | ≥ 0.24                      |                                  |                           |                        |                           |
| 2.50                       |                   | ≥ 0.25                                                                     | ≥ 0.30                      |                                  |                           | Copper<br>Nickel       |                           |
| 3.00                       |                   | ≥ 0.30                                                                     | ≥ 0.36                      |                                  |                           |                        | MgO                       |
| 4.50                       |                   | ≥ 0.45                                                                     | ≥ 0.54                      |                                  | SS316L<br>SS321           |                        | (Standard<br>Purity ≥97%) |
| 6.00                       | 4 Core            | $\downarrow$ Core $\geq 0.60$ $\geq 0.72$ $\geq 100 \text{ M}\Omega$ SS304 |                             | Nickel-Copper<br>Alloy           |                           |                        |                           |
| 6.40                       |                   | ≥ 0.64                                                                     | ≥ 0.77                      |                                  | and others                | and others             | MgO<br>(High Purity ≥     |
| 8.00                       |                   | ≥ 0.80                                                                     | ≥ 0.96                      |                                  |                           |                        | 99.4%)                    |
| 9.50                       |                   | ≥ 0.95                                                                     | ≥ 1.14                      |                                  |                           |                        |                           |
| 10.00                      |                   | ≥ 1.00                                                                     | ≥ 1.20                      |                                  |                           |                        |                           |
| 3.00                       |                   | ≥ 0.30                                                                     | ≥ 0.30                      |                                  |                           |                        |                           |
| 4.50                       |                   | ≥ 0.45                                                                     | ≥ 0.45                      |                                  |                           |                        | MgO                       |
| 6.00                       |                   | ≥ 0.60                                                                     | ≥ 0.60                      |                                  | SS316L<br>SS321           | Copper<br>Nickel       | (Standard<br>Purity ≥97%) |
| 6.40                       | 6 Core            | ≥ 0.64                                                                     | ≥ 0.64                      | ≥ 100 MΏ                         | SS304<br>Inconel 600      | Nickel-Copper<br>Alloy | MgO                       |
| 8.00                       |                   | ≥ 0.80                                                                     | ≥ 0.80                      |                                  | and others                | and others             | (High Purity ≥            |
| 9.50                       |                   | ≥ 0.95                                                                     | ≥ 0.95                      |                                  |                           |                        | 99.4%)                    |
| 10.00                      |                   | ≥ 1.00                                                                     | ≥ 1.00                      |                                  |                           |                        |                           |
| 6.00                       |                   | ≥ 0.60                                                                     | ≥ 0.60                      |                                  |                           |                        | MgO                       |
| 6.40                       |                   | ≥ 0.64                                                                     | ≥ 0.64                      |                                  | SS316L<br>SS321           | Copper<br>Nickel       | (Standard Purity<br>≥97%) |
| 8.00                       | 8 Core            | ≥ 0.80                                                                     | ≥ 0.80                      | $\geq$ 100 M $\Omega$            | SS304<br>Inconel 600      | Nickel-Copper<br>Alloy | MgO                       |
| 9.50                       |                   | ≥ 0.95                                                                     | ≥ 0.95                      |                                  | and others                | and others             | (High Purity ≥<br>99.4%)  |
| 10.00                      |                   | ≥ 1.00                                                                     | ≥ 1.00                      |                                  |                           |                        |                           |

#### **Ordering Example**

80-4Cu316 RTD MI Cable : 8.0 mm OD, 4 Cores, Copper Conductor, SS316L Sheath

60-6NiCu600 RTD MI Cable : 8.0 mm OD, 4 Cores, Nickel-Copper Alloy Conductor (Constantan), Inconel 600 Sheath



### MINERAL INSULATED HEATER CABLE

Tempsens Mineral Insulated Heating Cable is an electrical metal sheath heating cable with high economic efficiency (specific heating capacity up to 300 W/m). It is the most rugged and durable type of heating cable. Mineral Insulated Heating Cable is applicable for operation in high temperatures and explosion-proof areas. It can have a very high watt output and is used for process heating applications at temperatures where plastics insulated heating cables are not suitable. When properly installed, it has a very high lifetime.

Mineral Insulated Heaters are used in the Machinery, Power Generating Industry, Chemical and Petrochemical Industry as well as Research and Development.

| Heating Element | Sheath Material                          | Operating Temperature up to |
|-----------------|------------------------------------------|-----------------------------|
| NiCr Alloy      | Inconel 600 (2.4816) and SS316L (1.4404) | 800°C                       |
| CuNi Alloy      | SS321/AISI 321 (1.4541)                  | 500°C                       |

### **Technical Data**

|                        | Conductors NiCr Alloy, applicable for temperature up to 800°C |                            |                     |                        |  |  |  |  |
|------------------------|---------------------------------------------------------------|----------------------------|---------------------|------------------------|--|--|--|--|
| Outer Diameter<br>(mm) | Resistance at 20°C (Ω/m)                                      | Conductor Diameter<br>(mm) | Wall Thickness(mm)  | Maximum Voltage Rating |  |  |  |  |
| 3.2                    | 10                                                            | 0.38                       | ≥ 0.32              |                        |  |  |  |  |
| 3.2                    | 6.3                                                           | 0.48                       | ≥0.32               |                        |  |  |  |  |
| 3.2                    | 4                                                             | 0.61                       | ≥0.32               |                        |  |  |  |  |
| 3.6                    | 2.5                                                           | 0.77                       | ≥ 0.36              |                        |  |  |  |  |
| 3.8                    | 1.6                                                           | 0.96                       | ≥ 0.38              | 800 V                  |  |  |  |  |
| 4.1                    | 1                                                             | 1.21                       | ≥ 0.41              | 800 V                  |  |  |  |  |
| 4.5                    | 0.63                                                          | 1.52                       | ≥ 0.45              |                        |  |  |  |  |
| 5                      | 0.4                                                           | 1.91                       | ≥ 0.50              |                        |  |  |  |  |
| 5.6                    | 0.25                                                          | 2.42                       | ≥ 0.56              |                        |  |  |  |  |
| 6.5                    | 0.16                                                          | 3.03                       | ≥ 0.65              |                        |  |  |  |  |
|                        | Conductors                                                    | CuNi, applicable for temp  | erature up to 500°C |                        |  |  |  |  |
| 6.5                    | 0.16                                                          | 3.03                       | ≥ 0.65              |                        |  |  |  |  |
| 6.5                    | 0.16                                                          | 3.03                       | ≥ 0.65              |                        |  |  |  |  |
| 6.5                    | 0.16                                                          | 3.03                       | ≥ 0.65              | up to 300V /500V       |  |  |  |  |
| 6.5                    | 0.16                                                          | 3.03                       | ≥ 0.65              | up to 500v /500v       |  |  |  |  |
| 6.5                    | 0.16                                                          | 3.03                       | ≥ 0.65              |                        |  |  |  |  |
| 6.5                    | 0.16                                                          | 3.03                       | ≥ 0.65              |                        |  |  |  |  |

Tolerance for the resistance per mtr: ±10%

Tolerance for the outer diameter: according to DIN EN 61515

Example: 45-NiCr316 Heater MI Cable: 4.5 mm OD, 1 Core, NiCr Alloy Conductor, SS316L Sheath

### MINERAL INSULATED POWER CABLE

Mineral Insulated Copper cable belongs to electric cable class.

Outer Sheath : Copper Sheath with melting point of 1083°C

Insulation : Magnesium oxide insulator, hardly compressed, with melting point of 2400°C.

Conductor : Annealed conductor of 99.9% of purity electrolytic copper wire, with melting point of 1083°C

Covering: Addition LSF (Low Smoke Fumes) outer covering.

### Applicable Standard : IEC/EN 60702 Part 1, BS6387, IEC60331, Categories C, W & Z

- **Operating Temperature :** Maximum 250°C (But will operate up to a temperature of 1083°C but this will reduce the life of the cable)
- Voltage : 450/750 V (Heavy Duty Grade Cable )

#### 300/500 V (Light Duty Grade Cable)

| Details               | Standard Follow        | Description                                                                                                                           |
|-----------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| MI Power Cable        | IEC/EN 60702 Part 1    | Mineral Insulated Copper sheathed Cable with Copper Conductor                                                                         |
| Copper Conductor      | IEC 60228 for Class 1  | Copper (>99.9 %)                                                                                                                      |
| Insulation            | IEC/EN 60702 Part 1    | MgO (>99.4 % Pure)                                                                                                                    |
| Metallic Sheath       | ASTM B75 Specification | Seamless Copper Tube (99.9%)                                                                                                          |
| Insulation Resistance | IEC/EN 60702 Part 1    | >1000 MΩ for above 100 Mtr coil                                                                                                       |
| TESTING               |                        |                                                                                                                                       |
| A) Routine Test       | IEC/EN 60702 Part 1    | Conductor Resistance, Insulation Resistance, Sheath And<br>Insulation Integrity, Diameter & ovality                                   |
| B) Type Test          | IEC/EN 60702 Part 1    | Voltage Test, Resistance of Copper Sheath, Insulation Thickness,<br>Sheath Thickness, Bending test, Flattening test, Fire Resistance, |

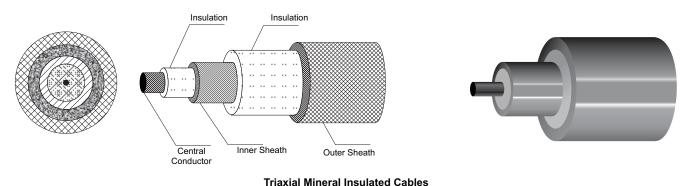
### How to Order - MI Power Cable

| Type of<br>Cable | No. of Core X<br>Core<br>Size(mm2) | Nominal Outer<br>Copper Sheath<br>Diameter (mm) | LSF Cable<br>Diameter<br>(mm) | Nominal Core<br>Diameter (mm) | Maximum Core<br>resistance (Ω/Km) | Copper Sheath<br>Cross Section<br>(mm2) | Maximum Resistance of<br>Copper Sheath (Ω/Km) |
|------------------|------------------------------------|-------------------------------------------------|-------------------------------|-------------------------------|-----------------------------------|-----------------------------------------|-----------------------------------------------|
|                  |                                    |                                                 | Suitable Fo                   | or (300/500 V) Lig            | ht Duty Grade Cable               | 1                                       |                                               |
| 2 L 1.5          | 2 X 1.5                            | 5.70                                            | 7.00                          | 1.38                          | 11.49                             | 7.12                                    | 2.42                                          |
| 2 L 2.5          | 2 X 2.5                            | 6.60                                            | 7.90                          | 1.78                          | 6.90                              | 9.41                                    | 1.83                                          |
| 2 L 4            | 2 X 4                              | 7.70                                            | 9.20                          | 2.26                          | 4.31                              | 12.15                                   | 1.42                                          |
| 3 L 1.5          | 3 X 1.5                            | 6.40                                            | 7.70                          | 1.38                          | 11.49                             | 8.93                                    | 1.93                                          |
| 3 L 2.5          | 3 X 2.5                            | 7.30                                            | 8.80                          | 1.78                          | 6.90                              | 10.68                                   | 1.61                                          |
| 4 L 1.5          | 4 X 1.5                            | 7.00                                            | 8.30                          | 1.38                          | 11.49                             | 10.21                                   | 1.69                                          |
| 4 L 2.5          | 4 X 2.5                            | 8.10                                            | 9.60                          | 1.78                          | 6.90                              | 12.83                                   | 1.34                                          |
| 2 T 1.5          | 2 X 1.5                            | 5.70                                            | 7.00                          | 1.38                          | 11.49                             | 7.12                                    | 2.42                                          |
| 2 T 2.5          | 2 X 2.5                            | 6.60                                            | 7.90                          | 1.78                          | 6.90                              | 9.41                                    | 1.83                                          |
|                  |                                    |                                                 | Suitable Fo                   | r (450/750 V) Hea             | vy Duty Grade Cable               | e                                       |                                               |
| 1 H 1.5          | 1 X 1.5                            | 4.9                                             | 6.20                          | 1.38                          | 12.1                              | 5.78                                    | 4.13                                          |
| 1 H 2.5          | 1 X 2.5                            | 5.3                                             | 6.60                          | 1.78                          | 7.41                              | 6.44                                    | 3.71                                          |
| 1 H 4            | 1 X 4                              | 5.9                                             | 7.20                          | 2.26                          | 4.61                              | 7.70                                    | 3.09                                          |
| 1 H 6            | 1 X 6                              | 6.4                                             | 7.70                          | 2.76                          | 3.08                              | 8.93                                    | 2.67                                          |
| 2 H 1.5          | 2 X 1.5                            | 7.9                                             | 9.40                          | 1.38                          | 12.1                              | 12.49                                   | 1.9                                           |
| 2 H 2.5          | 2 X 2.5                            | 8.7                                             | 10.20                         | 1.78                          | 7.41                              | 14.56                                   | 1.63                                          |
| 2 H 4            | 2 X 4                              | 9.8                                             | 11.30                         | 2.26                          | 4.61                              | 17.61                                   | 1.35                                          |
| 2 H 6            | 2 X 6                              | 10.9                                            | 12.40                         | 2.76                          | 3.08                              | 20.93                                   | 1.13                                          |
| 3 H 1.5          | 3 X 1.5                            | 8.3                                             | 9.80                          | 1.38                          | 12.1                              | 13.62                                   | 1.75                                          |
| 3 H 2.5          | 3 X 2.5                            | 9.3                                             | 10.80                         | 1.78                          | 7.41                              | 16.14                                   | 1.47                                          |
| 3 H 4            | 3 X 4                              | 10.4                                            | 11.90                         | 2.26                          | 4.61                              | 19.34                                   | 1.23                                          |

### Mineral Insulated Copper Cables are useful:

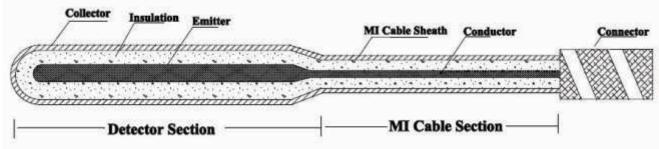
- Doesn't deteriorate with age.
- High current carrying capacity.
- · Over come the overload and short circuit.
- Resist to flame.
- Works under fire condition.
- Ideal solution for places where it is not allowed to break the walls to embed the conduit.




### **OTHER SPECIAL TYPE OF MINERAL INSULATED CABLE**

### **Coaxial Cables**

Coaxial cable is a type of cable that has an inner conductor surrounded by a tubular insulating layer, surrounded by a tubular conducting shield.


#### **Triaxial Cable**

Triaxial cable is a type of electrical cable similar to coaxial cable, but with the addition of an extra layer of insulation and a second conducting sheath. It provides greater bandwidth and rejection of interference than coax, but is more expensive.



#### SPND

Self-Powered Neutron Detectors have been used effectively as in-core flux monitors for over twenty-five years in nuclear power reactors world-wide. The typical SPND is a coaxial cable consisting of an inner electrode (the emitter), surrounded by insulation and an outer electrode (the collector).





Various type of SPND emitters are used in power reactor application.

- 1. Inconel 600
- 2. Rhodium (Rh<sup>103</sup>)
- 3. Vanadium  $(V^{51})$
- 4. Platinum (Pt<sup>195</sup>)

#### Cadmium (Cd)

- Need no power supply.
- Simple and robust structure.
- Relatively small mechanical size desired for in-core installation.
- Good stability under temperature & pressure conditions.



### 10 TEMPSENS

### (I) Sheath Material

| Sheath<br>Material                              | Maximum<br>Operating<br>temperature | Specification                  | Material Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------|-------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS304<br>AISI 304<br>1.4301                     | 800°C                               | ASTM A 269<br>or<br>ASTM A 213 | Resistance to intercrystalline<br>corrosion. Good resistance to organic<br>acids at moderate temperatures, saline<br>solutions, such as sulphates, sulphides<br>and sulphites, and alkaline solutions at<br>moderate temperatures.Good welding<br>properties.                                                                                                                                                                                                                                                                                                                                                                                                            | Used in chemical, petrochemical and fertilizer<br>industries, and as equipment in dairy, food<br>processing, pharmaceutical industries, in<br>hospitals, households as kitchenware,<br>cryogenic vessels and as heat exchanger in air<br>conditioning refrigeration, for machinery in<br>paper, pulp and textile beverage sectors.                                                                                                                                              |
| SS316<br>AISI 316<br>1.4401                     | 800°C                               | ASTM A 269<br>or<br>ASTM A 213 | An austenitic stainless steel with 2.0 to<br>3% Mo. which improves corrosion<br>resistance and imparts hot strength<br>characteristics. Used for applications<br>requiring resistance to pitting<br>corrosion. and in halogen<br>atmospheres. Good welding properties                                                                                                                                                                                                                                                                                                                                                                                                    | Architectural trims, marine exteriors, chemical<br>processing equipment, food processing<br>equipment, petroleum refining equipment,<br>pharmaceutical equipment, photographic<br>equipment, pulp and paper processing<br>equipment, textile finishing equipment, etc.                                                                                                                                                                                                          |
| SS321<br>AISI 321<br>1.4541                     | 800 °C                              | ASTM A 269<br>or<br>ASTM A 213 | Good resistance to intercrystalline<br>corrosion, also after welding. Good<br>resistance to heavy oil products, steam<br>and exhaust gases. Good oxidation<br>resistance. Can be used continuously<br>up to approximately 800°C. Good<br>welding properties in all standard<br>welding processes without the need for<br>welding retreatment. Good ductility.                                                                                                                                                                                                                                                                                                            | Nuclear power and reactor construction,<br>chemical apparatus engineering, annealing<br>furnaces, heat exchangers, paper and textile<br>industry, petrochemical and crude oil industry,<br>grease and soap industry, food processing<br>industry. used for aircraft exhaust stacks and<br>manifolds, pressure vessels, large mufflers for<br>diesel engines, carburetors, expansions<br>belows, stack liners, fire walls etc.                                                   |
| SS446<br>AISI 446<br>1.4749                     | 1150 °C                             | ASTM A 268                     | Extremely good resistance to<br>reducing, sulphurous atmospheres.<br>Very good resistance to oxidation and<br>air. Good resistance to corrosion<br>caused by incinerator slag and copper,<br>lead and tin smelts. Good welding<br>properties in arc welding and WIG<br>welding. Preheating to 200 - 400°C is<br>recommended. Retreatment is not<br>necessary.                                                                                                                                                                                                                                                                                                            | Petrochemical industry, metallurgy, power<br>technology, recuperators, heat treatment kilns,<br>vortex firing installations, waste incinerators.                                                                                                                                                                                                                                                                                                                                |
| Ss310 /<br>310S<br>AISI 310 /<br>310S<br>1.4845 | 1100 °C                             | ASTM A 213                     | Grade 310S is a low carbon version of<br>grade 310. 310S is less prone to<br>embrittlement and sensitization in<br>service. Good resistance to oxidation<br>and sulphidisation. Due to the high<br>content of chromium, the material is<br>resistant to oxidizing hydrous<br>solutions and has good resistance to<br>chlorine-induced tension crack<br>corrosion. Good resistance in cyanide<br>smelts and neutral salt melts at high<br>temperatures. Not susceptible to<br>green mould. Good welding<br>properties. It is recommended to weld<br>with low heat impact. Apply solution<br>annealing after welding to avoid the<br>danger of intercrystalline corrosion. | Boilers and blast furnaces, cement and brick<br>kilns, glass production, crude oil and<br>petrochemical industries, furnace construction<br>and power stations. Kilns, Heat Exchangers,<br>Radiant Tubes, Muffles, retorts, annealing<br>covers, Tube hangers for petroleum refining<br>and steam boilers, Coal gasifier internal<br>components, Saggers, Furnace parts,<br>conveyor belts, rollers, oven linings, fans,<br>Food processing equipment, Cryogenic<br>structures. |
| Inconel<br>600<br>2.4816                        | 1100 °C                             | ASTM B 167                     | Good general resistance to corrosion,<br>resistant to tension crack corrosion.<br>Excellent resistance to oxidation. Not<br>recommended with gases containing<br>CO2 and sulphur above 550°C and<br>sodium above 750°C. In air, resistant<br>up to 1100°C. Good welding properties<br>for all types of welding processes.<br>Excellent ductility even after long-term<br>use.                                                                                                                                                                                                                                                                                            | PWR, nuclear power, furnace construction,<br>plastics industry, heat treatment, paper and<br>food processing industries, boilers, aircraft<br>engines.                                                                                                                                                                                                                                                                                                                          |



### **RAW MATERIAL FOR MINERAL INSULATED CABLE**

| Sheath<br>Material       | Maximum<br>Operating<br>temperature | Specification | Material Properties                                                                                                                                                                                                                                                                                                                                                                                            | Applications                                                                                                                                                                                 |
|--------------------------|-------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inconel<br>800<br>1.4876 | 1100 °C<br>in air                   | ASTM B 163    | This material provides superior thermal stability due to<br>the addition of titanium and aluminum. Suitable for<br>applications requiring maximum stability under load in<br>addition to scaling resistance. Excellent resistance to<br>carburization and nitrogenisation. The material has good<br>welding properties in arc and WIG welding processes.<br>Heat treatment is not necessary after welding.     | petrochemical industries,                                                                                                                                                                    |
| Nimonic 75<br>2.4951     | 1100 °C                             | -             | Excellent high-temperature stability and resistance to<br>oxidation and carburization. Due to the combination of<br>nickel and chromium, the material has very good<br>resistance to hot, gaseous media. Resistance to thermal<br>fatigue and thermal shock. Good welding properties for all<br>types of welding processes. Excellent ductility even after<br>long-term use.                                   | construction, nuclear<br>reactors, mechanical<br>engineering, metal working,                                                                                                                 |
| Pt 10 % Rh               | 1300 °C                             |               | High-temperature resistance up to 1300°C under<br>oxidizing conditions. High heat resistance up to 1200°C<br>in the presence of oxygen, sulphur and silicon. Especially<br>resistant to halogens, ethanolic acids, NaHCI solutions<br>etc. Can become brittle through the absorption of silicon<br>from armoring ceramics. Sulphur eutectics possible at<br>temperatures over 1000°C. Sensitive to phosphorus. | Glass, electrochemical and<br>catalytic technology, chemical<br>industry, laboratories, melting<br>and annealing furnaces and<br>other furnaces, final storage of<br>nuclear power products. |
| Copper<br>Tube           | 250°C                               | ASTM B 75     | Good Corrosion resistance, Antibacterial, Non Magnetic,<br>Good Mechanical Strength                                                                                                                                                                                                                                                                                                                            | Air Conditioning &<br>Refrigeration,<br>Medical Gas and Vacuum,<br>Fire Sprinklers, Fuel Gas<br>(Natural Gas L.P. Gas)<br>Distribution, Direct Exchange<br>Geothermal Heating/Cooling,       |

Other sheathed material are available on request

#### (ii) Insulation (Magnesium Oxide)

Tempsens supplies MgO as the standard insulator with standard purity of  $\ge$  97% as well as MgO with a high purity of  $\ge$  99.4% as per specification ASTM E 1652

| PURITY      | HIGH PURITY<br>(≷ 99.4 % PURE) | STANDARD PURITY<br>( ≥ 97 % PURE) |
|-------------|--------------------------------|-----------------------------------|
| COMPOSITION | CONCENTRATION<br>(MASS) %      | CONCENTRATION<br>(MASS) %         |
| MgO         | 99.4 % (min)                   | 97 % (min)                        |
| CaO         | 0.35 % (max)                   | 0.80 % (max)                      |
| AI2O3       | 0.15 % (max)                   | 1.00 % (max)                      |
| Fe2O3       | 0.04 % (max)                   | 0.08 % (max)                      |
| SiO2        | 0.13 % (max)                   | 1.20 % (max)                      |
| С           | 0.02 % (max)                   | 0.02 % (max)                      |
| S           | 0.005 % (max)                  | 0.005 % (max)                     |
| В           | 0.0035 % (max)                 | 0.0025 % (max)                    |
| Cd          | 0.001 % (max)                  | 0.001 % (max)                     |
| B+Cd        | 0.004 % (max)                  | 0.003 % (max)                     |
| Fe          | -                              | 0.02 % (max)                      |

Values obtained from specification ASTM E 1652

#### (iii) Conductors

- 1. Thermocouple Conductors (K, J, E, N, R, S, B, T Type)
- 2. Pure Nickel wire, Pure Copper Wire, Copper Nickel Alloy wire for RTD Extension Cable
- 3. Nichrome 80-20 wire, Nichrome 60-40 wire etc. for Heater MI cable
- 4. Pure Copper Wire for MI Copper Cable
- 5. In conel 600, SS316L etc. for Coaxial and other special cables



### **PROCESSING OF MINERAL INSULATED CABLES**

### **Sintering Of MgO**



Raw Mgo is hygroscopic, so it has to be sintered in order to remove the moisture contents. MgO is put inside the furnace at a temperature of 1280°C for around 5 hours.

### **Drawing Of Sheath with Raw Materials**

#### **Annealing Of Cable**



Annealing of MI cable is done in a furnace having five zones at different temperatures depending on material types & properties.

### Polishing of MI Cable



Polishing has to be performed for better finishing of surface and free from any foreign material.



Employing special equipments step by step reduce the diameter of MI cable.





### Bar Drawing Machine



### **TESTING OF MINERAL INSULATED CABLE**

### **Auto Calibration**

Tempsens has facility of auto calibration at three temperature points which is performed on 100 percent Thermocouple MI Cable.

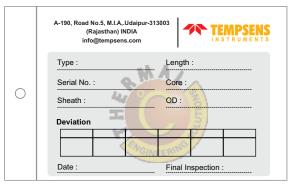


| S. No. | Name Of Test               | Descriptions                                | Standard                                | Test                                      |
|--------|----------------------------|---------------------------------------------|-----------------------------------------|-------------------------------------------|
| 1      | Dimensions test            | a) Sheath Outer Diameter ASTM E585/E585M-09 |                                         | Routine Test                              |
|        |                            | b) Sheath Wall Thickness                    | ASTM E585/E585M-09                      | Routine Test                              |
|        |                            | c) Insulation thickness                     | ASTM E585/E585M-09                      | Type Test                                 |
|        |                            | d) Conductor Diameter                       | ASTM E585/E585M-09                      | Routine Test                              |
| 2      | Insulation Resistance Test | a) At ambient Temperature                   | ASTM E 839-03                           | Routine Test                              |
|        |                            | b) At elevated Temperature                  | ASTM E 839-03                           | Type Test                                 |
| 2      | Insulation Compaction      | a) By Tension test                          | ASTM E 839-03                           | Type Test                                 |
| 3      | Density                    | b) By Calculation                           | ASTM E 839-03                           | Type Test                                 |
| 4      | Continuity Test            | By Measuring                                | ASTM E 839-03                           | Routine Test                              |
| 5      | Loop Resistance Test       | By Measuring                                | ASTM E 839-03                           | Routine Test                              |
|        | Sheath Integrity Test      | a) Water test                               | ASTM E 839-03                           | Routine Test                              |
|        |                            | b) Helium leak test                         | ASTM E 839-03                           | Routine Test                              |
| C      |                            | c) Dye Penetrate Test                       | ASTM E 839-03                           | Type Test                                 |
| 6      |                            | d) Bend Test                                | ASTM E 839-03 /<br>IEC 60702-1/IEEE 515 | Type Test                                 |
|        |                            | e) Tension Test                             | ASTM E 839-03                           | Type Test                                 |
| 7      | Calibration Test           | As per standard<br>Temperature              | ANSI MC 96.1<br>IEC 584-2               | Routine Test for MI<br>Thermocouple cable |
| 8      | Thermal Cycle Test         | At 325°C for 5 Cycle minimum                | ASTM E 839-03                           | Type Test                                 |
| 9      | Fire Resistance Test       | At 750°C                                    | IEC 60702 Part 1                        | Type Test for MI Power<br>Cable           |
| 10     | Flattening Test            | At 750°C                                    | According to Cable OD                   | Type Test for MI Power<br>Cable           |

All tests are performed in house and as per standard.

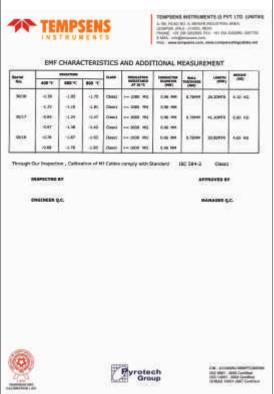
### **TESTING OF MINERAL INSULATED CABLE**

### **Packaging and Storage**


Stored in dry & dust free atmosphere with proper tag. The magnesium oxide insulation is hygroscopic. To prevent moisture penetration, both ends are sealed. Under extreme conditions some moisture absorption could take place in spite of the sealing, so a dry place is desirable for storage.

When pieces are cut from stock lengths, the exposed ends to be sealed at once. If moisture enters, this will lower the insulation resistance and may prove troublesome in welding. Moisture Penetration can be corrected by heating the sheath.




### Tagging

Each coil is fitted with a temporary seal to prevent moisture ingress during storage and shipping. Each coil is tagged with a unique identification number for traceability purposes.



#### **Dispatch and Test Certificate**

| and the second                              | 1000                               | TEST CER           | IPICATE              | 15      | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|---------------------------------------------|------------------------------------|--------------------|----------------------|---------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Certificate his ( M47/12<br>Customer Name ) | VIC-044                            | _                  | _                    | _       | Date   M              | 963910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| P.C. Rulet AL PER HALL                      | -                                  | P.O.Date   III     | 10.01.01             |         | Laters 1 70           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                             |                                    | 3.0.0441 38        | in the second second |         | and the second second | and the local division of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Type   BORRD18                              |                                    | Description: 4     |                      |         | Table Quantity        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                             | 10                                 | ATERIAL CER        | TIFICAT              | E       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Tabe Test Rep                               | Table Test Report Candidatar Clear |                    | minul Acat           | iyaia . | Deside                | int Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Sileath 1 99339                             | 1 3                                | T.C. No . LONDIN   | atació               |         | T.C.Mar. W            | IN IN INCOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 0.C No 1 04-0007296                         | 1.1                                | T.A.Au 1 208/02-02 |                      | TANCE   | Haritis .             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| CANE: HUM                                   | -                                  | Chemical           |                      |         | 110000                | and the second se |  |
| Chemical Address                            | •                                  | 8 <b>9</b>         |                      | -       | Chermi                | cel Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| c 0.000 %                                   |                                    | 9.59%              |                      | MRS     | -                     | 1.000 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| ter instein                                 |                                    | 88.88%             | -Chee                | 5.88 W  |                       | 8.002 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| The LATEN                                   | Ghe                                | 0.01%              | - 81                 | 2.85%   | - E.                  | 8.830 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 10 19.628 M                                 | -                                  | _                  | -                    |         | 500                   | 8,012.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| P EERW                                      | -                                  |                    | -                    | -       | - 64                  | -6.001.%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 8 8.817%                                    | -                                  |                    | -                    | -       | Pel03                 | 8.812.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| B 8,000 %                                   | -                                  | -                  | -                    | -       | 1992                  | PE.54.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| -                                           |                                    | -                  | -                    | -       | 8003                  | 10010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 8)                                          |                                    | Pa.                | otech                |         | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |

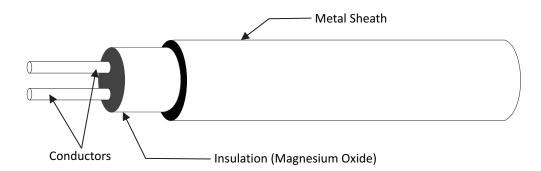


Test Certificate



### **ENDURES MINERAL INSULATED CABLES**

## Low Drift Mineral Insulated Cables for Use up to 1200°C


Tempsens is pleased to offer **EnduRes** sheath material of MI cables.

#### The chemical composition wt % of EnduRes :

| Chromium   | : | 22        |
|------------|---|-----------|
| Nickel     | : | Balance   |
| Molybdenum | : | 3         |
| Silicon    | : | 1.4       |
| Carbon     | : | 0.01 max. |

Rare Earth Elements

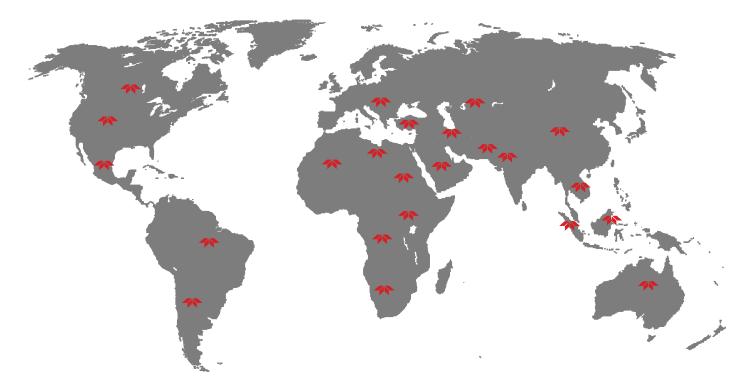




The Special sheathing offer high-temperature corrosion resistance and strength; with very low long term drift.

EnduRes is a Ni-22% Cr alloy with the addition of 1.4% Si, 3.0% Mo and rare earth elements. Elements such as manganese and aluminum, which can diffuse through the thermocouple insulator and contaminate the thermo-element wires leading to emf drift over time, are controlled at very low levels thus giving excellent long term performance. In addition, the composition is similar to the thermo-element wires, which further reduces the potential for the diffusion of elements between the alloys. The sheath has outstanding static and cyclic oxidation resistance at temperatures up to 1200°C.

MI cables are available in K/N type, simplex and duplex in various diameters.


| OD (MM)                                                                           | ТҮРЕ                                                     | SHEATH                                                                   | MGO GRADE                                                 | ACCURACY                                                        |
|-----------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|
| 0.5<br>1.0<br>1.5<br>2.0<br>2.2<br>3.0<br>4.5<br>5.0<br>6.0<br>8.0<br>9.5<br>10.0 | K - Simplex<br>KK - Duplex<br>N - Simplex<br>NN - Duplex | 316 En<br><b>Note:-</b> Diagonal<br>Element Supplied<br>Unless Specified | STANDARD<br>(≥ 96% PURE)<br>HIGH PURITY<br>(≥ 99.4% PURE) | CLASS 1<br>CLASS 2<br>As per<br>IEC 584-2<br>or<br>ANSI MC 96.1 |



### **CERTIFICATES**



### **THERMAL ENGINEERING SOLUTIONS**



# www.tempsens.com

www.thermowellworld.com | www.temperaturecalibration.in |www.glassthermocouples.com | www.compensatingcables.net | www.marathonheater.in

#### **INDIA**

Tempsens Instruments (I) Pvt. Ltd. U# I B-188A, Road No.5, M.I.A., Udaipur-313003 (Rajsthan) INDIA Ph.:+91-294-3057700 to 800 Fax.:+91-294-3057750 Email: info@tempsens.com

#### Tempsens Instruments (I) Pvt. Ltd. U# II

A-190, Road No.5, M.I.A., Udaipur-313003 (Rajsthan) INDIA Ph.:+91-294-3052900 Fax.:+91-294-3052950 Email: info@tempsens.com

#### GERMANY

Tempsens Instruments GmbH Loehestrasse 37, 53773 Hennef, GERMANY Ph.:+49-2242-8703-22 Fax.:+49-2242-8703-20 Email: hmueller@tempsens.de



